Genetic analysis of drought tolerance with respect to fiber traits in upland cotton.
نویسندگان
چکیده
Cotton germplasm was analyzed to investigate its potential for developing water stress tolerance in varieties in the future. Four tolerant (NIAB-78, CIM-482, BH-121, and VH-142) and four susceptible (CIM-446, FH-1000, FH-900, and FH-901) lines were identified of 50 accessions based on their seedling root length. A complete set of diallel crosses among eight selected genotypes was subjected to genetic analysis for fiber property traits. Additive and non-additive genetic variance was involved in the inheritance of fiber strength, fineness, and length under normal and drought conditions. A large proportion of genetic variance was additive, which was further supported by moderately high narrow-sense heritability estimates for the characters. Graphic representation of variance versus covariance also depicted additive gene activity with partial dominance and the absence of non-allelic interactions in trait inheritance. The results of this study suggest that drought tolerance of cotton genotypes can be improved through crosses among tolerant genotypes using conventional selection procedures in segregating generations.
منابع مشابه
Assessment of genetic variability, heritability and association of plant attributes with lint yield and fiber quality in advanced lines of cotton (Gossypium hirsutum L.)
Information on genetic variability and heritability of plant attributes and their correlation with lint yield and fiber quality is important for planning breeding and selection strategies for prediction of genetic gains in cotton breeding programs. For these purpose, a field experiment was carried out using randomized complete block design with four replications in 2016 and 2017 at Hashem-Abad ...
متن کاملGenetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton
Cotton fiber, a raw natural fiber material, is widely used in the textile industry. Understanding the genetic mechanism of fiber traits is helpful for fiber quality improvement. In the present study, the genetic basis of fiber quality traits was explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations under multiple environments in Upland cotton based on m...
متن کاملGhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana
Upland cotton (Gossypium hirsutum L.), an important source of natural fiber, can tolerate relatively high salinity and drought stresses. In the present study, a plasma membrane Na+/H+ antiporter gene, GhSOS1, was cloned from a salt-tolerant genotype of G. hirsutum, Zhong 9807. The expression level of GhSOS1 in cotton roots was significantly upregulated in the presence of high concentrations of ...
متن کاملAn NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton
Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according ...
متن کاملGenetic Studies of Fiber Quality Characters in Upland Cotton
Five upland cotton cultivars were crossed in a complete diallel crossing system to investigate inheritance pattern and combining ability of parents for different fiber quality traits like staple length, fiber strength, fineness and uniformity. The study was carried out in the Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad during the years 2005-07. Highly signif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2016